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Abstract— The increasing usage of Residual Number System The paper is organized as follows. In Section 2, we introduce
(RNS) in signal processing applications demands the devgiment of  the necessary background. The proposed improvements ere pr

new and more adaptable RNS moduli sets and arithmetic unitsin ; ; : : ; ;
this paper, a new reverse converter for moduli se{22*1— 1, 221 1 sented in section 3. Section 4 provides hardware implertienfa

1}, which can offers large dynamic range, is presented. We impved Section 5 is simulation, and Section 6 is conclusion.
a previously introduced Mixed-Radix Converter architecture [1] for
a high speed hardware design. Hardware architecture of propsed
converter is based on adders and subtractors, without the rexl
for ROM or multiplier. The presented design results in hardware A Residue Number System
saving comparison to the last reverse converter for the modu set

Il. BACKGROUND

{220+l _q 20 o0 73, A residue number system (RNS) is defined in terms
Index Terms— Residue Number System, Reverse Converter, Mixed Of @ relatively-prime moduli set{my,m,,...,mg} that is
Radix Conversion. gedmy, mj) =1 fori # j [10]. The greatest common divisor (gcd)

for a pair of numbers (a,b), can be calculated by the well know
. INTRODUCTION Euclidian algorithm. A binary numbeX can be represented as

. . . X =(X1,X,...,%n), Where
Residue Number System (RNS) architectures are typically

composed of three main parts, namely, a binary-to-residume c X=X modm = (X)m, 0<x<m (1)
vzerte:rs, re_?;]due arlléhm(:tlcbynlts, and a rtesm.iuet-lr:o-blm;werterl such a representation is unique for any intefein the range
[2]. [3]. The residue-to-binary converter is the most coexp 0,M — 1], whereM = mymp - --my, is the dynamic range of the

part of any RNS architecture. Moduli set choice is also duli . .
; ? . . t . Ti f th due to b
important issue since the complexity and the speed of theo uli set{my, my,..., M} To perform the residue to binary

resulting conversion structure depend on the chosen modc?nversion, that is to convert the residue numberx,. .., Xn)
9 . P . hlo the binary numbekK, the chinese remainder theorem (CRT)
set. Special moduli sets have been used extensively to eed

the hardware complexity in the implementation of residue t%%d mixed-radix conversion (MRC) are generally used.

binary converters [4], [5]. Most popular three-moduli set i
{2n 2" —1,2"+ 1} [5]-[7]. This moduli set has the disadvantageB. Chinese Remainder Theorem

[8] that myltiplication_by powers of 2 with respegt to_thé1 ®1) The binary numbei is computed by

modulus is not as simple as left circular rotation in 8 21) N

modulus. However, larger dynz_imic ranges than th_e one mdviq X = < (X Ni>li> @)
by the moduli set proposed in [8], [9] are required. For this = M

cases K. A. Gbolagade at al. recently proposed the moduli set _ . T

{2n— 1,220 220+l —%} which has suffié/ie?n gynamic range and"%ere’vIi =M/my andN; = (M; bm is the multiplicative inverse
avoids the modulo (2+ 1) type arithmetic [1]. In this paper K. _Of M, r_nodulo:?.l_'l'hﬁ mz-gn tdhr:;/\_/backh_o:]thls ?pproach 'S that
A. Gbolagade at al. presented memoryless Chinese Remain'(.liéngrjsl TAU |p|cat_|on y iS, Which are farge numbers,
Theorem (CRT) based and, Mixed-Radix (MRC) based rever88d Modulohv operations

converters. They showed that MRC based convertor is useful

because it covers the entire dynamic range whereas CRT bagedMixed-Radix Conversion

convertor does not. However, multiplicative inverse pisgmbin
this paper (my1)m, =221 —2"—1, (My ) m, = 2 and(m; Y, =
22n+1_on+1_ 3) are not best solution because two multiplicative
inverse have complex values. In this paper we proposed tte be

values for multiplicative inverse for the same moduli set. . . -
] ) ) ~ whereas are called the mixed-radix coefficients and they can
In this paper, we made improvement to the residue to binagy opiained from the residues by

converter for moduli set proposed in [1] that leads to hardwa o o
savings and improves performance of the system. an = (((xn—a1) (M )m, —a2)(m,

The numberX can be computed by

n
X:anrlMi+~--+a3m1mz+a2m1+a1 3)
i=

Yy = —

an-1) (M 2y )m,) “
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I1l. THE PROPOSED IMPROVEMENTS form of moduli set in descending ord¢p?"1 — 1,227 2" _1},
second form{22™1 _1 2" _1 22"} and so on. A set of three
modules has six forms. Finally, the sixth form is a set of nieslu
in ascending order. Thus, the modulo at first positiomis at
second position iy, and at third position isns.

X =ay +axm +az3mmp (5) [}

were 1,m; and mymp are numerical bases;, a; and ag are Multiplicative inverse for all six forms of given moduli sate
mixed radix digits. In (5)ai, a andag are represented as anshown in Table I.The first form of given moduli s¢p2"* —

Suppose that we have residue numbes, xo,x3, }, 0 < x <
m, for the moduli sef{m, mp, mg, }. The binary equivalenX of
the residues can be computed as follows [10]

sequential algorithm 1,221,2" — 1} provides the best solution fagj: ¢ = —1 and
_ c13=Cpz = 1. It can be seen that the fourth form of moduli set
& =X ({22n,22n+1 1 2" —1}) also provides a good solution.
ap =((x2—a1)C12), (6) Using the first form of given moduli set mixed-radix digits
ag =(((Xs—a1)C13— ag)c23>rrts can be represented as
wherec; j for 1 <i < j < 3 is the multiplicative inverse ofi a1 =X (8)
modulo mj, or (Gjj ><.m>mj = 1. If the mixed-radix digi.ts are ap = (X1 — X2)pm 9)
given, any number in the intervdd,M — 1] can be uniquely 8 = ((xa — 1) _a) (10)
represented. 3= AW T A2 -1 a2/ -1
Well known block diagram of MRC Converter for three moduliOperandsay, a; andag are (2n+ 1)-bit, 2n-bit andn-bit, respec-
set is in Figure 1 displayed. tively. The proposed hardware realization of RNS to mixadix

conversion is depicted in Figure 2(a). We proposed here a new

X X . - :
! z s modulo (2" — 1) subtraction algorithm that avoids the double

_ representation of zero. Figure 2(b) illustrates the aechifre

,»L \ ,\& of this new operator which requires two borrow propagate

Mod Mod subtractor (BPS).

mp m3
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Fig. 2: Proposed MCR converter for the first form of moduli
& set{221 _1 22" 2" _1} (a), and modulox—y)xn_1 subtrac-
Fig. 1: MRC Converter for three moduli set. tor (b).

For given the RNS numbefxy,xz,x3} with respect to the It is known, modulo(2"— 1) of a negative number is ac-
moduli {27 — 1,221, 22"+1 _ 1} the following hold true [1] complished by subtracting this number frof@ — 1). This is
Clp=22 2" 1 equivalent to taking one’s complement of this humber. Havev
using subtractors we avoids ones’s complement operation.
Co3=2 (7)

22n+1 _ 2n+l -3

Ci3= IV. HARDWARE IMPLEMENTATION

Definition 1: Digits in the residue number system have No gjnce most values that need to be processed are represented i
ordering significance. In residue addition, subtractiand enul- a1y it is necessary to convert them to an RNS representat
tiplication, any particular digit of the resultant depersddely on thus binary to RNS conversion units and RNS to binary are
the corresponding digits of its operands. However, RestOUe yomanded in this type of systems.

i'\:lz(f)d-; ??A)ércg?;lsé?:gziged?ei?:zr(;;t:ne d(;glt;:ggr:;gl amjiﬁo The hardware structure proposed RNS to mixed-radix numbers
) ’ g gcep conversion depicted in Figure 3. Converter contains thueé&ac-

set ordering. Due to this reason we defihe form of moduli set . .
9 e tPrs: one modulo 2" and two moduli 2 — 1. This converter also

the order of modules in the residue number system. For examp - . ) .
assuming three moduli"2- 1, 2", 22+1 _ 1 we define the first contains two binary to RNS converters. The first for converti

binary numbers from the?2t1 —1 channel to the®- 1 channel,



TABLE I: Multiplicative inverseci; of mj andm; for different forms of a set of modules.

Form | my mp mg | C12 C13 C23
1 22l _q 2n -1 -1 1 1
2 22l _q -1 2n 1 -1 2n_on_
3 22n 2n 1 22n+1 -1 1 2 22n+1 _ 2n+1 -3
4 22 g2l _ g 21 2 1 1
5 on_1q 22n+1 -1 22n 22n+l _ 2n+l —-3 22n _on_1q -1
6 on_1q 22n 22n+1 -1 22n _on_1q 22n+l _ 2n+l _3 2

and the second for converting binary numbers from tR& 2By taking the equation:

channel to the 2— 1 channel.

X1 N2 Nt No
> I| | |
) y
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Fig. 3: Hardware realization of residue number system tcemhix

radix conversion

The simplest one is the converter for ting channel. The value
(X1)02n can be obtained by the remainder of the divisiorxpby

227 'which can be accomplished by truncating the binary value

X1 = XonXon—1--- X1 Xo- Sincex; is binary number on2+ 1 bits,

then
(X1) g2 = Xon—1Xon 2+ -+ X1Xo.

(2Mr_1=1 (12)
equation (11) can be rewritten as:
(x1)2n—1 = (N2+ N1 +No)zn_1 (13)

Thus the conversion of; to moduli 2'— 1 can be performed
simply by modulo 2 — 1 adding theNg and Ng components of
x1. For our design these two operandg and N; are binary
numbers om bits, while N3 is one for forward conversior,
or zero forap forward conversion, with modulo™2- 1.

In designing a modulo™- 1 adder, it is useful to distinguish
among three cases, depending on the intermediate resuieof t
addition of the two operandd$\l; and N, where 0< Ni;Np <

—1[11]

o 0<N1+N2<2n 1;

e Ni+Np = 2" 1;

o« 1< N1+N2 <ol p
In the first case, the intermediate result is the correct roo2lt—

1 result. In the second and third cases, we should subtfaefl2
in order to get the correct result; this subtraction is egjeit to
subtracting 2 and adding 1.

Fig. 4 shows the hardware architecture of the RNS to binary
conversion for the modulo™2- 1. For residue numbex; each
of the N; andN, is then bits binary numbers, butl, is one bit
binary number. On the other hand, mixed-radix coefficents
represented with2bits, i.e. onlyNg Np exist.

L

CPA
end-around-carryl, \ N
7

CPA (J

+1
*— .
\1, correction
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\
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For the 2 — 1 channel the calculation of the corresponding |

residues is more complex, since the final result of the cawer
depends on the value of all tiebits. Instead of using a division
operation to calculate the"2- 1 residue, which is a complex
operation and expensive both in terms of area and speed, this

calculation can be performed as a sequence of additions, as

described below:

(x1)2n_1 = (Np22" + N1 2"+ No)on_1 (11)

(No+ Nz +Ng)on_g

Fig. 4: Binary to RNS conversion for moduld' 2 1.



A. Mixed-radix to binary conversion
The hardware realization of (5) can be represented as

X = (al + 22n+1a2 + 24n+1a3) —ay— 22na3

(14)
= ay+35+3
were
a4 :al + 22n+1a2 + 24n+1a3
=(agon,@.2n-1,---,810)
2n41
+(agon-1,822n-2,...,8,0,0,0...,0)
——
on 241 (15)

+ (3-3.n7173-3,n727 e 7a3.0707 07 e 70)
N——

n 4n+1
=(agn-1,...,830,822n-1,..-,82,0,81.2n;---,81,0)

5n+1

Operandas andag must be expanded tbn+ 1)-bit number
since operan@y is a (5n+ 1)-bit number.

a5 =—ay
=—(ag2n-1,822n-2,---,820)

2n
=—(0,0,...,0,a22n-1,822n-2,...,820) (16)
3n+1 2n
=(11,...,1 @ :-1,322n-2,..-,820)
3n+1 2n
ag =—2""ag
=-(0,0,...,0,a3n-1,83n-2;---,830,0,0,...,0)
2n+1 n 2n (17)

:(17 17 LR 1733.n—1733,n—27 e 733.07 17 17 LR 71)
S—— N——r

2n+1 n 2n

Hardware structure for mixed-radix to binary conversion,
based on the equations (15), (16) and (17), contain onlyy€arr

Save-Adders (CSA) with End-Around-Carry (EAC). Operand
is simply obtained by concatenating mixed-radix digis a»
andag which are(2n+1) bits, 2h bits andn bits, respectively.
Operandas is complemented mixed radix diggb which is first
expanded ta5n+ 1) bits. Operandgg is one’s complement of

binary numbers which is obtained by left shift of mixed radix [

digit ag by 2n bits and then it is expanded {&n+ 1) bits.

V. SIMULATION

Let is give the numbelX = 43210 or in RNS notation, for
n=3, itis X = {30,10,6}rng127647} OF in binary form these
are

xp | 0011110
X2 001010
X3 110

We convert this RNS number representation into the mixegto)

radix number representation witlhy,a,as using Mixed-Radix
convertor shown in Figure & = 30, a, =20 andag =5, or in
binary representation these are

a; | 0011110
a 010100
az 101

After a bit of organization, based on equations (15), (16 an
(17), we get

a 1010101000011110

as +1111111111101011

as +1111111010111111

Partial sum 01010101101001010

Carry output 11111110101111110

Sum |210/1010100011001000
End-Around-Carry [— 10

Final result 1010100011001010

The following holds true

10101000110010%0= 4321Q9

VI. CONCLUSION

This paper presents an improved mixed-radix reverse ctaver
for the recently proposed residue number system moduli set
{22n+1 _1 220 2" _1}. The hardware architecture of proposed
converter consist of two levels. The first level is RNS to rdixe
radix conversion. It is improved by using optimal choice ofrh
of moduli set.

The second level is hardware architecture. It is composed of
regular binary adders and subtractor, without the need Sorgu
modular adders. The highest number of arithmetic operation
are with binary numbers oh bits. Proposed RNS reverse
converter can be efficiently implemented, resulting in ligh
overall performance of the RNS system.
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