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Abstract— The increasing usage of Residual Number System
(RNS) in signal processing applications demands the development of
new and more adaptable RNS moduli sets and arithmetic units.In
this paper, a new reverse converter for moduli set{22n+1−1,22n,2n−
1}, which can offers large dynamic range, is presented. We improved
a previously introduced Mixed-Radix Converter architecture [1] for
a high speed hardware design. Hardware architecture of proposed
converter is based on adders and subtractors, without the need
for ROM or multiplier. The presented design results in hardware
saving comparison to the last reverse converter for the moduli set
{22n+1−1,22n,2n−1}.

Index Terms— Residue Number System, Reverse Converter, Mixed
Radix Conversion.

I. I NTRODUCTION

Residue Number System (RNS) architectures are typically
composed of three main parts, namely, a binary-to-residue con-
verter, residue arithmetic units, and a residue-to-binaryconverter
[2], [3]. The residue-to-binary converter is the most complex
part of any RNS architecture. Moduli set choice is also an
important issue since the complexity and the speed of the
resulting conversion structure depend on the chosen moduli
set. Special moduli sets have been used extensively to reduce
the hardware complexity in the implementation of residue to
binary converters [4], [5]. Most popular three-moduli set is
{2n,2n−1,2n +1} [5]–[7]. This moduli set has the disadvantage
[8] that multiplication by powers of 2 with respect to the (2n+1)
modulus is not as simple as left circular rotation in a (2n−1)
modulus. However, larger dynamic ranges than the one provided
by the moduli set proposed in [8], [9] are required. For this
cases K. A. Gbolagade at al. recently proposed the moduli set
{2n−1,22n,22n+1−1} which has sufficient dynamic range and
avoids the modulo (2n +1) type arithmetic [1]. In this paper K.
A. Gbolagade at al. presented memoryless Chinese Remainder
Theorem (CRT) based and, Mixed-Radix (MRC) based reverse
converters. They showed that MRC based convertor is useful
because it covers the entire dynamic range whereas CRT based
convertor does not. However, multiplicative inverse proposed in
this paper (〈m−1

1 〉m2 = 22n−2n−1, 〈m−1
2 〉m3 = 2 and〈m−1

1 〉m2 =
22n+1−2n+1−3) are not best solution because two multiplicative
inverse have complex values. In this paper we proposed the best
values for multiplicative inverse for the same moduli set.

In this paper, we made improvement to the residue to binary
converter for moduli set proposed in [1] that leads to hardware
savings and improves performance of the system.
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The paper is organized as follows. In Section 2, we introduce
the necessary background. The proposed improvements are pre-
sented in section 3. Section 4 provides hardware implementation,
Section 5 is simulation, and Section 6 is conclusion.

II. BACKGROUND

A. Residue Number System

A residue number system (RNS) is defined in terms
of a relatively-prime moduli set{m1,m2, . . . ,m3} that is
gcd(mi ,mj )= 1 for i 6= j [10]. The greatest common divisor (gcd)
for a pair of numbers (a,b), can be calculated by the well known
Euclidian algorithm. A binary numberX can be represented as
X = (x1,x2, . . . ,xn), where

xi = X modmi = 〈X〉mi , 0≤ xi < mi (1)

such a representation is unique for any integerX in the range
[0,M −1], whereM = m1m2 · · ·mn is the dynamic range of the
moduli set{m1,m2, . . . ,mn}. To perform the residue to binary
conversion, that is to convert the residue number(x1,x2, . . . ,xn)
into the binary numberX, the chinese remainder theorem (CRT)
and mixed-radix conversion (MRC) are generally used.

B. Chinese Remainder Theorem

The binary numberX is computed by

X =
〈 n

∑
i=1

〈xiNi〉mi M1

〉

M
(2)

whereMi = M/mi andNi = 〈M−1
i 〉mi is the multiplicative inverse

of Mi modulo mi . The main drawback of this approach is that
it requires multiplication by theMis, which are large numbers,
and moduloM operations

C. Mixed-Radix Conversion

The numberX can be computed by

X = an

n

∏
i=1

Mi + · · ·+a3m1m2 +a2m1 +a1 (3)

where ais are called the mixed-radix coefficients and they can
be obtained from the residues by

an =
〈
(((xn−a1)〈m

−1
1 〉mn −a2)〈m

−1
2 〉mn −·· ·−

an−1)〈m
−1
n−1〉mn

〉

mn

(4)

wheren> 1 anda1 = x1. For MRDsai , 0≤ ai < mi , any positive
number in interval[0,M−1] is uniquely represented. The Mixed
Radix Conversion is a strictly sequential process. There isno
need for final modulo reduction.



III. T HE PROPOSED IMPROVEMENTS

Suppose that we have residue number{x1,x2,x3,}, 0≤ xi <
mi , for the moduli set{m1,m2,m3,}. The binary equivalentX of
the residues can be computed as follows [10]

X =a1 +a2 m1 +a3 m1m2 (5)

were 1, m1 and m1m2 are numerical base,a1, a1 and a3 are
mixed radix digits. In (5),a1, a2 and a3 are represented as an
sequential algorithm

a1 =x1

a2 =
〈
(x2−a1)c12

〉

m2

a3 =
〈
((x3−a1)c13−a2)c23

〉

m3

(6)

whereci, j for 1 ≤ i ≤ j < 3 is the multiplicative inverse ofmi

modulo mj , or 〈ci j ×mi〉mj = 1. If the mixed-radix digits are
given, any number in the interval[0,M − 1] can be uniquely
represented.

Well known block diagram of MRC Converter for three moduli
set is in Figure 1 displayed.
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Fig. 1: MRC Converter for three moduli set.

For given the RNS number{x1,x2,x3} with respect to the
moduli {2n−1,22n,22n+1−1} the following hold true [1]

c12 = 22n−2n−1

c23 = 2

c13 = 22n+1−2n+1−3

(7)

Definition 1: Digits in the residue number system have no
ordering significance. In residue addition, subtraction, and mul-
tiplication, any particular digit of the resultant dependssolely on
the corresponding digits of its operands. However, Residueto
Mixed-Radix Conversion depends of the digit ordering as shown
in (4). Further, mixed-radix digits ordering depends of themoduli
set ordering. Due to this reason we definethe form of moduli set:
the order of modules in the residue number system. For example,
assuming three moduli 2n−1, 22n, 22n+1−1 we define the first

form of moduli set in descending order{22n+1−1,22n,2n−1},
second form{22n+1 −1,2n−1,22n}, and so on. A set of three
modules has six forms. Finally, the sixth form is a set of modules
in ascending order. Thus, the modulo at first position ism1, at
second position ism2, and at third position ism3.

�

Multiplicative inverse for all six forms of given moduli setare
shown in Table I.The first form of given moduli set{22n+1 −
1,22n,2n −1} provides the best solution forci j : c12 = −1 and
c13 = c23 = 1. It can be seen that the fourth form of moduli set
({22n,22n+1−1,2n−1}) also provides a good solution.

Using the first form of given moduli set mixed-radix digits
can be represented as

a1 = x1 (8)

a2 = 〈x1−x2〉22n (9)

a3 = 〈〈x3−x1〉2n−1−a2〉2n−1 (10)

Operandsa1, a2 anda3 are(2n+1)-bit, 2n-bit andn-bit, respec-
tively. The proposed hardware realization of RNS to mixed-radix
conversion is depicted in Figure 2(a). We proposed here a new
modulo (2n − 1) subtraction algorithm that avoids the double
representation of zero. Figure 2(b) illustrates the architecture
of this new operator which requires two borrow propagate
subtractor (BPS).
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Subtr.
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Subtr.
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−
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−

−
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Fig. 2: Proposed MCR converter for the first form of moduli
set{22n+1−1,22n,2n−1} (a), and modulo〈x−y〉2n−1 subtrac-
tor (b).

It is known, modulo(2n − 1) of a negative number is ac-
complished by subtracting this number from(2n − 1). This is
equivalent to taking one’s complement of this number. However,
using subtractors we avoids ones’s complement operation.

IV. H ARDWARE IMPLEMENTATION

Since most values that need to be processed are represented in
binary, it is necessary to convert them to an RNS representation,
thus binary to RNS conversion units and RNS to binary are
demanded in this type of systems.

The hardware structure proposed RNS to mixed-radix numbers
conversion depicted in Figure 3. Converter contains three subtrac-
tors: one modulo 22n and two moduli 2n−1. This converter also
contains two binary to RNS converters. The first for converting
binary numbers from the 22n+1−1 channel to the 2n−1 channel,



TABLE I: Multiplicative inverseci j of mi andmj for different forms of a set of modules.
Form m1 m2 m3 c12 c13 c23

1 22n+1−1 22n 2n−1 −1 1 1
2 22n+1−1 2n−1 22n 1 −1 22n−2n−1
3 22n 2n−1 22n+1−1 1 2 22n+1−2n+1−3
4 22n 22n+1−1 2n−1 2 1 1
5 2n−1 22n+1−1 22n 22n+1−2n+1−3 22n−2n−1 −1
6 2n−1 22n 22n+1−1 22n−2n−1 22n+1−2n+1−3 2

and the second for converting binary numbers from the 22n

channel to the 2n−1 channel.
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Fig. 3: Hardware realization of residue number system to mixed-
radix conversion

The simplest one is the converter for them2 channel. The value
〈x1〉22n can be obtained by the remainder of the division ofx1 by
22n, which can be accomplished by truncating the binary value
x1 = X2nX2n−1 · · ·X1X0. Sincex1 is binary number on 2n+1 bits,
then

〈x1〉22n = X2n−1X2n−2 · · ·X1X0.

For the 2n − 1 channel the calculation of the corresponding
residues is more complex, since the final result of the conversion
depends on the value of all theX bits. Instead of using a division
operation to calculate the 2n − 1 residue, which is a complex
operation and expensive both in terms of area and speed, this
calculation can be performed as a sequence of additions, as
described below:

〈x1〉2n−1 = 〈N222n +N12n +N0〉2n−1 (11)

By taking the equation:

〈2n〉2n−1 = 1 (12)

equation (11) can be rewritten as:

〈x1〉2n−1 = 〈N2 +N1 +N0〉2n−1 (13)

Thus the conversion ofx1 to moduli 2n − 1 can be performed
simply by modulo 2n−1 adding theN0 and N0 components of
x1. For our design these two operandsN0 and N1 are binary
numbers onn bits, while N3 is one for forward conversionx1,
or zero fora2 forward conversion, with modulo 2n−1.

In designing a modulo 2n−1 adder, it is useful to distinguish
among three cases, depending on the intermediate result of the
addition of the two operands,N1 and N2, where 0≤ N1;N2 <
2n−1 [11]:

• 0≤ N1 +N2 < 2n−1;
• N1 +N2 = 2n−1;
• 2n−1 < N1 +N2 < 2n+1−2.

In the first case, the intermediate result is the correct modulo 2n−
1 result. In the second and third cases, we should subtract 2n−1
in order to get the correct result; this subtraction is equivalent to
subtracting 2n and adding 1.

Fig. 4 shows the hardware architecture of the RNS to binary
conversion for the modulo 2n−1. For residue numberx1 each
of the N1 andN2 is then bits binary numbers, butN2 is one bit
binary number. On the other hand, mixed-radix coefficienta2 is
represented with 2n bits, i.e. onlyN0 N1 exist.
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CPA

CPA

correction
+1

end-around-carry

1 0

N0 N1

〈N0 +N1 +N2〉2n−1

N2

Fig. 4: Binary to RNS conversion for modulo 2n−1.



A. Mixed-radix to binary conversion

The hardware realization of (5) can be represented as

X = (a1 +22n+1a2 +24n+1a3)−a2−22na3

= a4 +a5 +a6
(14)

were

a4 =a1 +22n+1a2 +24n+1a3

=(a1,2n,a1,2n−1, . . . ,a1,0
︸ ︷︷ ︸

2n+1

)

+(a2,2n−1,a2,2n−2, . . . ,a2,0
︸ ︷︷ ︸

2n

,0,0. . . ,0
︸ ︷︷ ︸

2n+1

)

+(a3,n−1,a3,n−2, . . . ,a3,0
︸ ︷︷ ︸

n

,0,0, . . . ,0
︸ ︷︷ ︸

4n+1

)

=(a3,n−1, . . . ,a3,0,a2,2n−1, . . . ,a2,0,a1,2n, . . . ,a1,0
︸ ︷︷ ︸

5n+1

)

(15)

Operanda5 anda6 must be expanded to(5n+1)-bit number
since operanda4 is a (5n+1)-bit number.

a5 =−a2

=− (a2,2n−1,a2,2n−2, . . . ,a2,0
︸ ︷︷ ︸

2n

)

=− (0,0, . . . ,0
︸ ︷︷ ︸

3n+1

,a2,2n−1,a2,2n−2, . . . ,a2,0
︸ ︷︷ ︸

2n

)

=(1,1, . . . ,1
︸ ︷︷ ︸

3n+1

,a2,2n−1,a2,2n−2, . . . ,a2,0
︸ ︷︷ ︸

2n

)

(16)

a6 =−22na3

=− (0,0, . . . ,0
︸ ︷︷ ︸

2n+1

,a3,n−1,a3,n−2, . . . ,a3,0
︸ ︷︷ ︸

n

,0,0, . . . ,0
︸ ︷︷ ︸

2n

)

=(1,1, . . . ,1
︸ ︷︷ ︸

2n+1

,a3,n−1,a3,n−2, . . . ,a3,0
︸ ︷︷ ︸

n

,1,1, . . . ,1
︸ ︷︷ ︸

2n

)

(17)

Hardware structure for mixed-radix to binary conversion,
based on the equations (15), (16) and (17), contain only Carry-
Save-Adders (CSA) with End-Around-Carry (EAC). Operanda4
is simply obtained by concatenating mixed-radix digitsa1, a2
and a3 which are(2n+1) bits, 2n bits andn bits, respectively.
Operanda5 is complemented mixed radix digita2 which is first
expanded to(5n+ 1) bits. Operanda6 is one’s complement of
binary numbers which is obtained by left shift of mixed radix
digit a3 by 2n bits and then it is expanded to(5n+1) bits.

V. SIMULATION

Let is give the numberX = 43210 or in RNS notation, for
n = 3, it is X = {30,10,6}RNS{127,64,7} or in binary form these
are

x1 0011110
x2 001010
x3 110

We convert this RNS number representation into the mixed-
radix number representation witha1,a2,a3 using Mixed-Radix
convertor shown in Figure 3:a1 = 30, a2 = 20 anda3 = 5, or in
binary representation these are

a1 0011110
a2 010100
a3 101

After a bit of organization, based on equations (15), (16) and
(17), we get

a4 1010101000011110
a5 +1111111111101011
a6 +1111111010111111

Partial sum 01010101101001010
Carry output 11111110101111110

Sum |10|1010100011001000
End-Around-Carry 10

Final result 1010100011001010

The following holds true

10101000110010102 = 4321010

VI. CONCLUSION

This paper presents an improved mixed-radix reverse converter
for the recently proposed residue number system moduli set
{22n+1 −1,22n,2n−1}. The hardware architecture of proposed
converter consist of two levels. The first level is RNS to mixed-
radix conversion. It is improved by using optimal choice of form
of moduli set.

The second level is hardware architecture. It is composed of
regular binary adders and subtractor, without the need for using
modular adders. The highest number of arithmetic operations
are with binary numbers ofn bits. Proposed RNS reverse
converter can be efficiently implemented, resulting in higher
overall performance of the RNS system.
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